

January 2021

Post-mix Beverage

a basic understanding of a post-mix systems

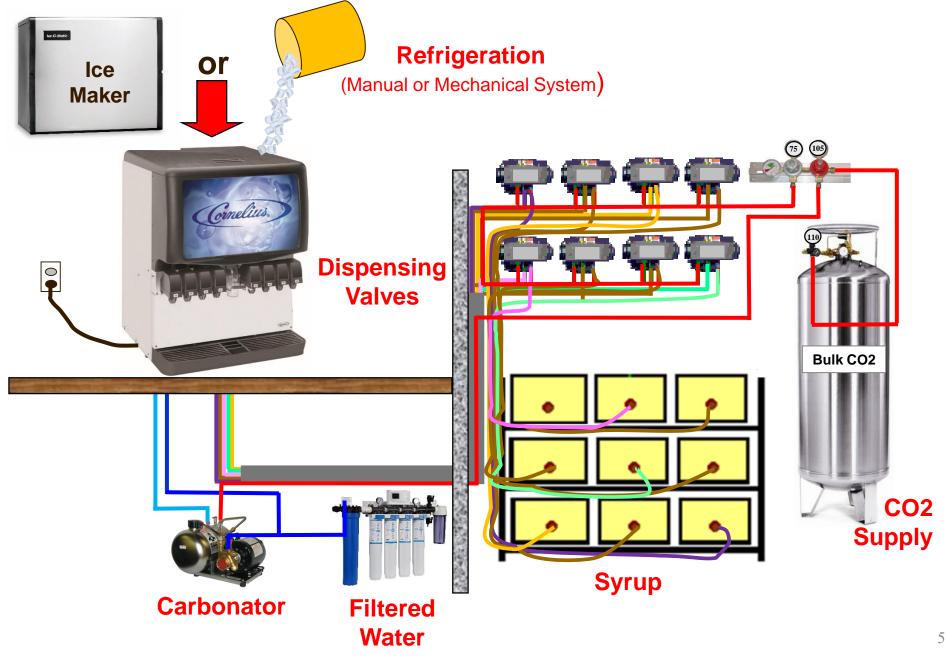
Post-Mix Systems

- Produces carbonated water
- Delivers syrup from the BRP to the dispenser
- Refrigerates the product and the water
- Portions syrup and water at the valve and blends the syrup and water at the nozzle
- Dispenses finished product at the proper flow rate

Post-Mix System

The main elements of a post-mix system are:

- Water Supply
- CO2 Supply
- Syrup Supply
- Carbonation
- Cooling
- Dispensing Valve



System Overview

Water Supply

- Shut Off Valve
- Water Filtration System
- Water Booster
- Water Flow Regulator
- Back Flow Preventer
- Carbonator

Water Supply

Since a soft drink is approximately 5 parts water to 1 part syrup, having an adequate, clean water supply is absolutely essential.

Areas of Focus:

- Volume
- Pressure
- Quality
- Safety

Post-Mix System Components Water Supply

Volume

Carbonator

- Most carbonators (the component used to manufacture carbonated water) require a 100 gallon per hour water supply.
 - To assure this volume, water should fill a 5 gal bucket within 3 min's
- A minimum 1/2" water supply line is required from the building feed to the point of connection
- A minimum of 3/8" line is required from the point of connection to the unit and carbonator
 - Braided nylon supply tubing will be used to deliver water to and from the carbonator.

Water Supply

Pressure

- High water pressure effects ability to carbonate
 - If water pressure exceeds CO2 pressure, it will not carbonate
 - A water regulator may be necessary to control pressure
 - A maximum of 65 psi is recommended to the carbonator
- Low pressure effects both carbonated and non-carbonated beverages
 - If the water pressure is too low, the carbonator tank may not fill
 - A water booster may be necessary to control pressure
 - A minimum of 45 psi is recommended to the carbonator
 - Low water pressure can effect the ratio of non-carbonated beverages

Adjustable regulator

Non-adjustable regulator

<section-header><text>

Taste & Smell

- High sulfur or iron content can effect taste and smell of drink
- High chlorine content may also effect taste and smell of drink

Filtering and Conditioning

- Water filters are recommended to remove unwanted silt, sand, smells and tastes from water supply
- Water filters must be monitored and changed periodically

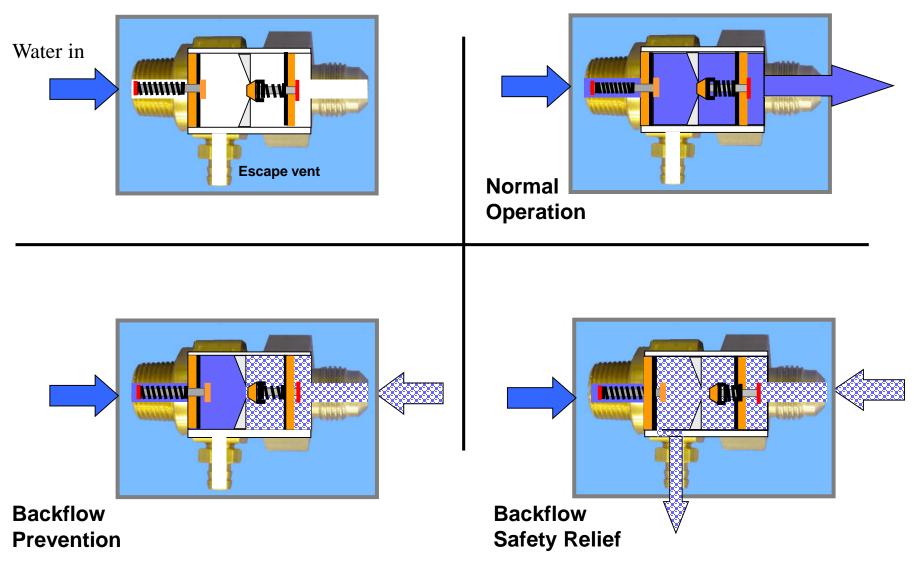
Water Supply Safety

When carbon dioxide is mixed with water, carbonic acid, a weak acid, is formed. Post mix carbonators form such acids as they carbonate the water that is mixed with the syrups to produce a soft drink. If the acidic water is allowed to enter the building water supply, a serious condition could occur. Many soft drink locations plumb their water through copper pipes or tubing. If a copper tube comes in contact with the carbonic acid, the acid will dissolve some of the copper and could contaminate the building's water supply. Consuming this copper contaminated water could result in copper poisoning.

Copper Poisoning.

Drinking water that contains high levels of copper, could result in vomiting, diarrhea, stomach cramps, and nausea. High intake of copper could also cause liver and kidney damage, and even death. Very young children are sensitive to copper, so long-term exposure to high levels of copper water may cause liver damage and death.

Water Supply



Backflow Preventer

A backflow preventer offers permanent protection against copper poisoning in a water supply system. It consists of two independent acting check valves and a atmospheric port to channel the carbonated water away from the water source. If backflow occurs, the back-pressure will cause a seat in the first check to cover water inlet orifice. In the event that the first check fails, a diaphragm in the second check lifts and directs flow to the atmospheric port where it can be plumbed to a drain.

Backflow Preventer Operation

CO₂ Supply

- CO2 Supply Delivery
- High Pressure Regulator
- Low Pressure Regulator
- Combination Regulators

CO2 (Carbon Dioxide) Supply

The CO2 supply performs two major functions.

- It propels the syrup from the syrup source to the valve where it mixes with water to produce a soft drink
- It is introduced and absorbed into water to produce carbonated or soda water

Areas of Focus:

- Container Theory
- Container Handling & Safety
- Supply Quality
- Pressure Regulation

CO2 (Carbon Dioxide) Supply

Container Theory (Tank explanation)

CO2 is stored in a tank (or bulk container)

 The tank is partially filled with liquid CO2. A "full" tank usually contains about 65% liquid CO2

- When compressed or pressurized, CO2 becomes a liquid. In a tank at room temperature, some of the liquid vaporizes ("boils off"), turns into a gas and occupies space at the top of the tank. This process increases the pressure in the tank. Once the pressure reaches around 800 psi (pounds per square inch), the boiling off stops. When the pressure in the tank is lowered (CO2 usage), the liquid begins vaporizing again to produce more gas. Since the boiling point of CO2 is about -110 degrees Fahrenheit (below zero), normal ambient room temperatures are more than sufficient to vaporize the liquid CO2. Room temperatures will have a major effect on the boiling process and internal tank pressure. The warmer the ambient temperature, the higher the pressure in the tank. A typical tank pressure is usually between 700 - 1200 psig.

CO2 Supply

Container Handling & Safety

Carbon Dioxide (CO2) is heavier than air and displaces oxygen. CO2 is a colorless, noncombustible gas with a faintly pungent odor. High percentages of CO2 may displace oxygen in the blood. Prolonged exposure to CO2 can be harmful. Exposure to high concentrations of CO2 may cause such symptoms as headache, sweating, rapid breathing, increased heart rate, dizziness, mental depression, visual disturbances, or tremors. These symptoms may be followed rapidly by a loss of consciousness and suffocation. Strict attention must be observer in the prevention of CO2 gas leaks in the entire CO2 and soft drink system. If a CO2 leaks is suspected, immediately ventilate the contaminated area and evacuate.

Safety precautions

- The tank valve has a pressure relief device "burst disk" that is designed to rupture and safely release the CO2 should the pressure rise above 1,800 to 2,500psi.

– Keep CO2 tank cool. An extreme rise in temperature will equate to an extreme rise in pressure inside the tank.

CO2 tanks must be chained and stored upright

- A CO2 tanks is under 700 1200 psig of pressure and must be secured (chained) to prevent it from falling over. They also must be Inspected periodically.
- Tanks must be stored upright so liquid CO2 will remain at the bottom of the tank.

CO2 Supply

Pressure Regulation

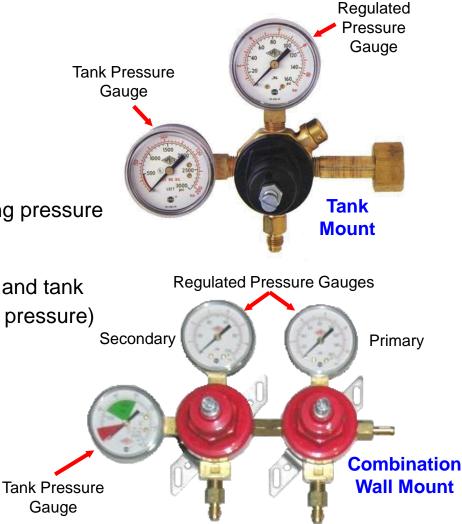
Post mix systems typically require two types of CO2 regulators

Primary Regulator

- Supplies CO2 pressure to carbonator
- Normal pressure settings are between 90 and 110 psig

Secondary Regulator

- Supplies CO2 pressure to syrup pumps
- Normal pressure setting are between 65 and 75 psig



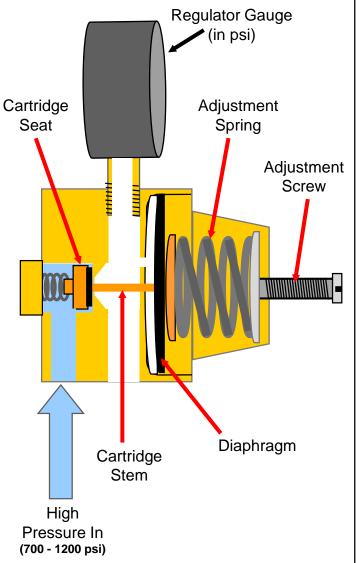
CO2 Supply

Pressure Regulation - Primary

- Primary Regulator
 - Reduces CO2 pressure from tank to working pressure
 - Will be mounted on tank
 - Usually includes regulated pressure gauge and tank pressure gauge (displays supply container pressure)
 - Gauge range is from 0 to 160psi
 - Normal pressure is between 90 to 110 psig
 - Primary has a relief valve to guard against over-pressurization of system


CO2 Supply

Pressure Regulation - Secondary


Secondary Regulator

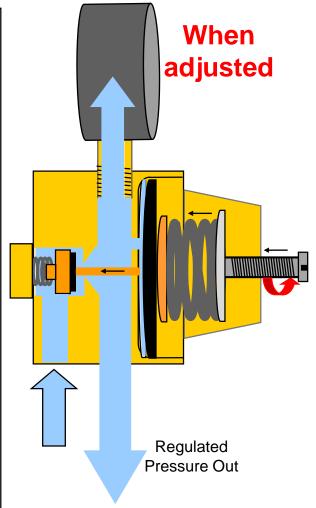
- Can be tank or wall mounted
- Gauge range from 0 to 100 psi
- Normal Pressure between 65 to 75 psig
- Secondary has a relief value to guard against over-pressurization of system

Post-Mix System Components How a Regulator Works

When a regulator is connected to a CO2 source and the valve is opened, the CO2 gas will flow into the regulator but will stop at the **Cartridge Seat**.

Turning the regulator **Adjustment Screw** in (clockwise), will place more tension on the **Adjustment Spring** and cause the spring to push back on the **Diaphragm**.

The **Diaphragm** will in turn push back the **Cartridge Stem** and **Seat**, thus allowing CO2 to flow into the regulator.


The CO2 will flow into the regulator body until the pressure in the regulator equalizes to the tension pressure placed on the **Adjustment Spring**.

At that equalized pressure, the **Diaphragm** will move forward allowing the **Cartridge Seat** to seal the inlet opening and stop the flow of inbound CO2.

The equalized pressure in the regulator may be read in "pounds per square inch" (PSI) on the regulator gauge.

Continue turning in on the adjustment screw until desired pressure is reached.

When there is a demand for CO2 on the system, the pressure will lower in the regulator and begin the above process again.

Syrup Supply

- Product Containers
- Syrup Pumps
- Connection Devices
- Syrup Systems

Syrup Supply

- Syrup is normally packaged in BIB (Bag in Box) containers.
- The syrup supply is propelled to the dispensing (and mixing) valves using a syrup pump driven by CO2 gas

Areas of Focus:

- Delivery Systems
- Containers
- Pump Operation

Post-Mix System Components Syrup Supply

Delivery Systems - BIB

Bag-in-Box is a bag filled with syrup, encased in a box

- There is a connection receiver at one end of the bag.
- A pump with a line and connector is attached to the bag. •
- Syrup is pumped out of the bag, moved through the pump and to the dispensing unit. When the bag empties (collapses), it creates a vacuum and the pump stops pumping.
- There are three popular types of connectors ٠
 - The Coca-Cola connector (red)
 - The General Beverage connector (gray)
 - Pepsi connector (green)
- A Bag Selector allows for the hook-up of two BIB containers to a single pump
 - As a BIB runs empty and creates a vacuum, the BIB selector automatically changes over to the full BIB.

General Connector Pepsi Connector

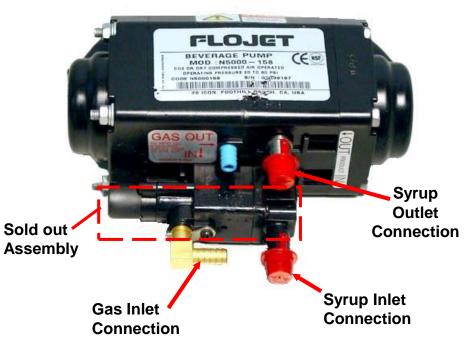
Connection receiver

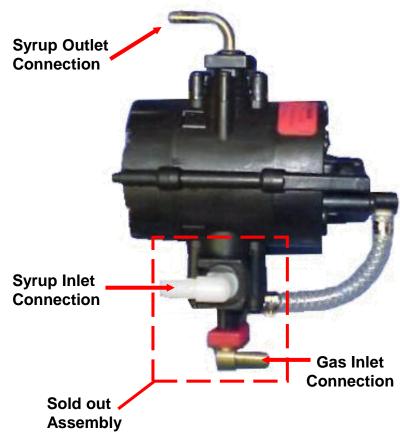
Beverage

Syrup Supply

Pump Operation

The Bag-in-Box pump


- FlowJet and Shurflo are the two most widely used pumps
- The pumps are commonly driven with CO2. An air compressor may be used but is rare and is not recommended.
- Normal pump inlet pressure settings are between 65 and 75 psi
- The pump draws syrup out of the BIB bag, through the pump and then pushes it to the dispensing unit



Syrup Supply

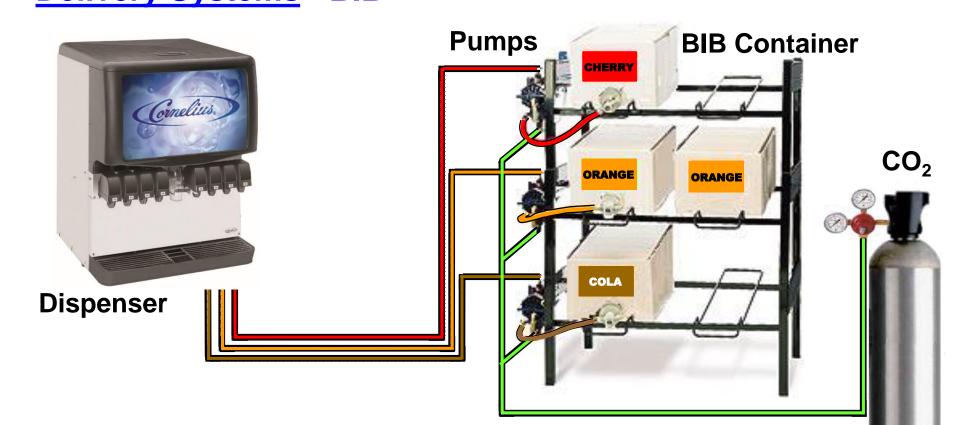
Pump Operation

SHURFLO PUMP

FLOJET PUMP

Post-Mix System Components Syrup Supply

Pump Operation


The syrup pump is propelled by gas (or air) pressure. The pressure of the syrup leaving the pump is equal to the gas pressure feeding or driving the pump.

The pump will continue to run until the pressure of the out-bound syrup is equal to the in-bound gas pressure .

CO2 pressure

When the pressure drops in the syrup line to the dispensing valve, the pump will activate and continue until the pressure is equalized. This will happen every time a drink is poured from the valve. Syrup line pressure

Post-Mix System Components Syrup Supply Delivery Systems - BIB

Carbonation

Carbonated water is plain water into which Co2 has been absorbed.

The process of absorbing carbon dioxide gas into water is called carbonation.

Areas of Focus:

- Carbonation Characteristics
- Carbonator Operation

Carbonation

Carbonation Characteristics

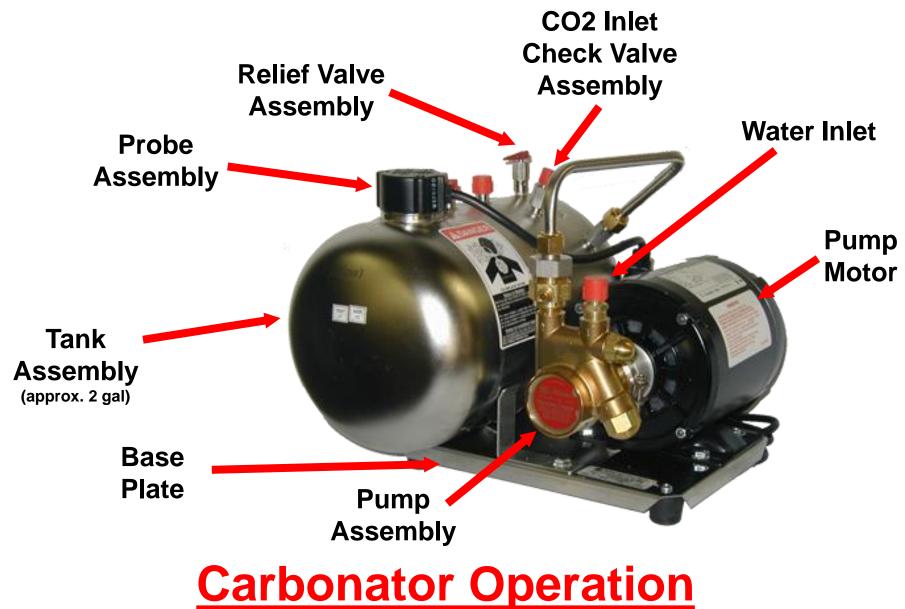
- Carbonation is a key ingredient in soft drinks It helps to define the taste, scent and level of visual appeal
 - Carbonation enhances the flavoring of the beverage
 - Carbonation carries the aroma of beverage
 - Carbonation is often used to give the drink a "bite". However contrary to popular belief, the fizzy taste is caused by the diluted carbonic acid inducing a slight burning sensation, and is not caused by the presence of bubbles.

Carbonation

Carbonation Characteristics

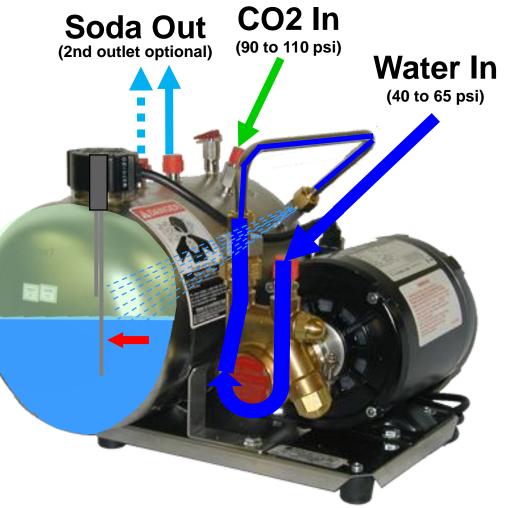
Carbonation is effected by a number of factors:

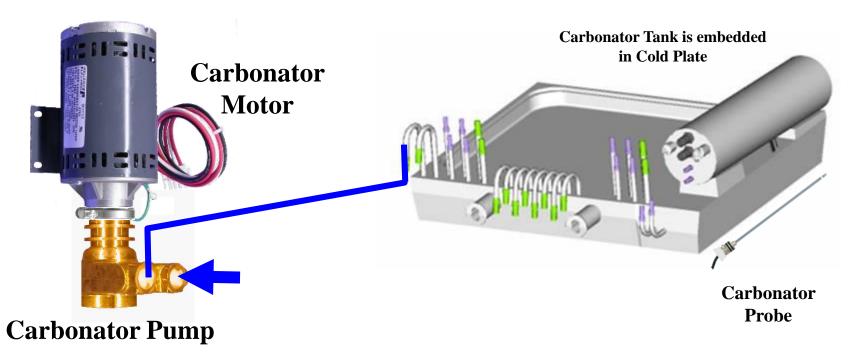
Pressure You want to maintain 15-20 Psi higher Co2 pressure over water pressure to ensure proper carbonation and avoid flooding the carbonator tank.


Co2 = 90-110Psi Water = 50-65Psi

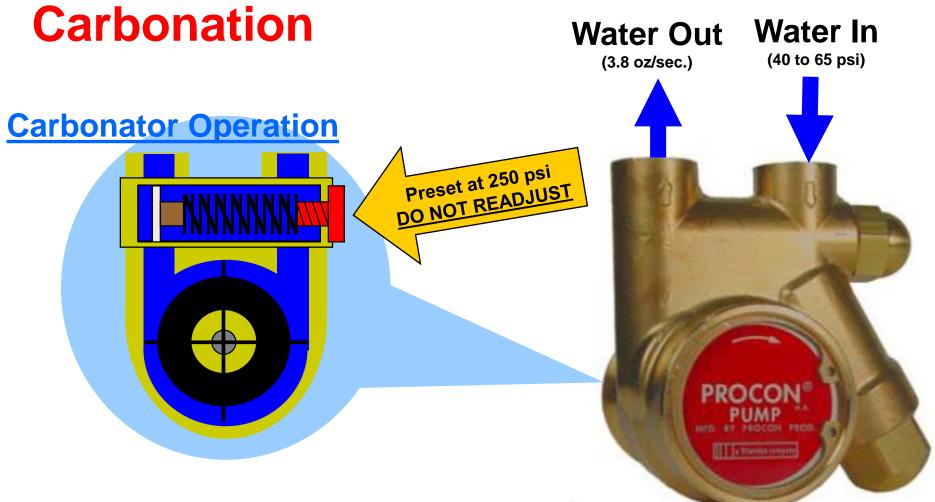
Temperature The colder the temperature of water or finished drink, the better it retains carbonation.

Carbonation Chart (in cup)


Temperature of Beverage	Carbonation Level	Loss of Carbonation
36°	100%	0%
<u>38°</u>	96%	4%
40°	92%	8%
42°	88%	12%
44°	84%	16%
46°	81%	19%
48°	78%	22%
50°	75%	25%


Carbonation

Carbonator Operation


- 1. CO2 gas pressure of 90 to 110psi is maintained in the carbonator tank.
- 2. Water pressure of 50 to 65psi enters the carbonator pump.
- 3. When lower probe recognizes low water level in tank, pump motor cycles to fill tank.
- Water is pumped into tank through an orifice (to create a spray for maximum CO2 absorption) until water level reaches upper probe level, then pump motor shuts off.

Post-Mix System Components Cold Carbonation

An alternative carbonation method is "Cold Carbonation". In this method the carbonator tank sits on top of the cold plate. The pre and post chilled water circuits are embedded within a cold plate that is covered with ice to chill before and after carbonation takes place. This allows for maximum absorption of CO2 within the water and assures that the gas remains in the water at lower operating pressures. Since cold water absorbs CO2 more efficiently then ambient water, ³⁵ a lower CO2 pressure can be used, typically 70 to 75 psig.

To prevent the pump from over-pressurizing the carbonator tank, the pump has a built in by-pass chamber to circulate water in excess of 250psi.

Post-Mix System Components Carbonation

Carbonator Operation -Start-up Procedure

- 1. Turn on Co2.
- Purge air from carbonator tank by pulling relief valve 2 3 times
- 3. Turn on water
- 4. Plug into Electric Supply
- 5. Purge carbonated water from tank and lines by activating dispensing valves until carbonated water is dispensed.
- 6. Allow Carbonator to run until tank is full, then activate valves until a steady stream of carbonated water is flowing.

Post-Mix System Components Carbonation

Carbonator Operation Shut-down Procedure

- 1. Unplug Electric Supply to Carbonator
- 2. Turn off water
- 3. Activate valve(s) to purge water
- 4. Turn off Co2 once water is purged
- 5. Activate valve to purge Co2
- 6. Perform needed service

- Water Supply
- CO₂ Supply
- Syrup Supply
- Carbonation
- Cooling

Cooling

Cooling is essential to a post mix system as it preserves carbonation and assures the dispense of a refreshingly cold drink. It is also necessary to prevent foaming and to maintain a drink quality.

Areas of Focus:

- Cooling Options
- Ice Cooling
- Mechanical Refrigeration
- Adding Ice to Maintain Drink Quality

Cooling Options

Dispensers with beverage cooling, use either an **Ice Cooled** (cold plate) or **Mechanically Cooled** (water-bath) system to cool the beverages.

(IBD – Ice Beverage Dispenser)

Mechanically Cooled (OCE – Over Counter Electric)

Refrigeration

Cooling Options – Ice Cooled

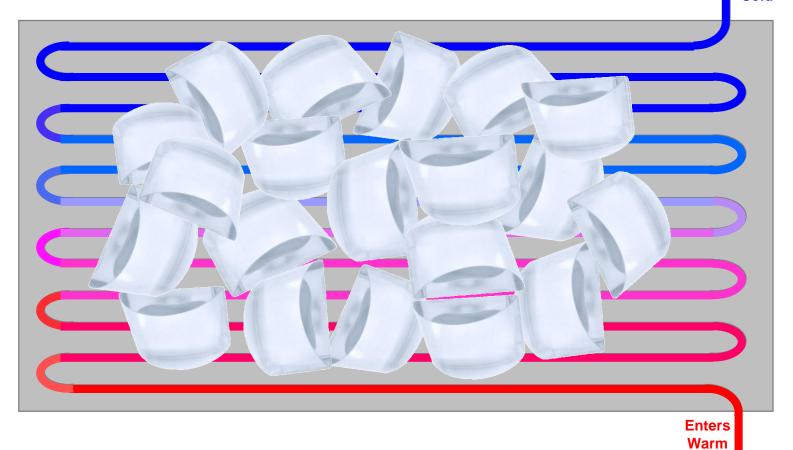
The Ice Cooled is the most common system for beverage cooling. It consist of an aluminum cold plate located inside the dispenser's ice storage bin, through which the carbonated water and syrups are run before flowing to the dispensing valves. Dispensers with this system are available as a counter top unit, with the ice stored in an ice bin behind the valves, or an under-counter unit, with the ice stored below the counter.

Refrigeration

Cooling Options – Ice Cooled

The advantages to the Ice Cooled method of cooling are:

- It is an effective method of cooling
- It is a simple and reliable cooling method
- It's easy to maintain
- Less expensive than mechanical systems to operate
- As long as ice is available, there is endless cooling capacity

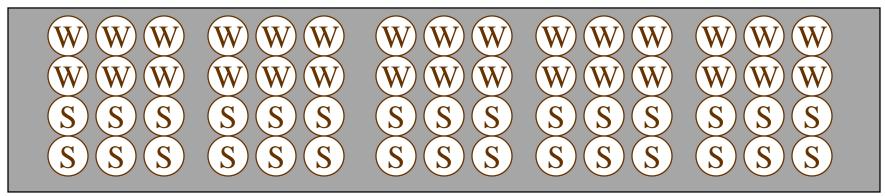

Refrigeration

Cooling Options – Ice Cooled

Factors that must be considered when choosing an ice cooled system are:

- The number of drinks to be served and capacity of ice bin
- The temperature of incoming water and syrup
- 25% for cooling, 75% for cups
- Ability to drain melted ice

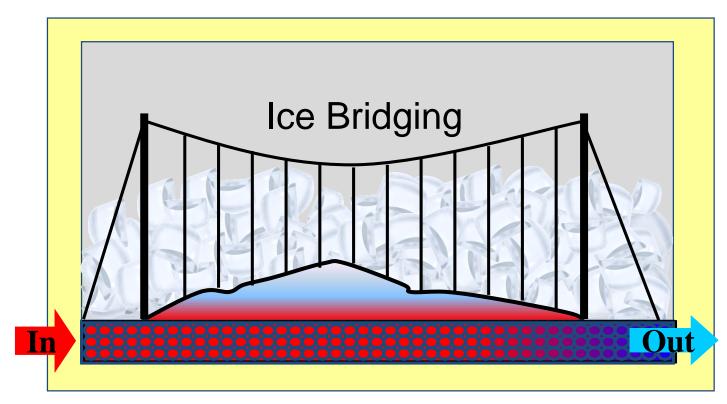
Cooling Options – Ice Cooled


Cold Plate Cooling Circuits

Exits Cold

Refrigeration

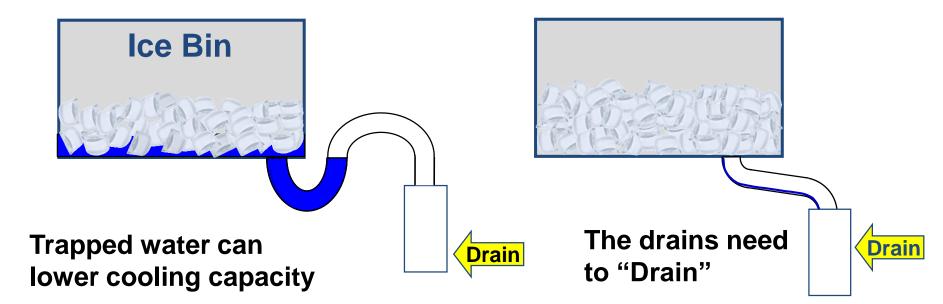
Cooling Options – Ice Cooled


Cold Plate Cross Section

Water coils on top for maximum heat transfer

Refrigeration

Cooling Options – Ice Cooled



Bridging reduces heat transfer

Cooling Options – Ice Cooled

Heat transfer occurs between the warm product inside the cold plate beverage circuits and the ice in contact with the top of the aluminum cold plate. Because the cooling will take place only with ice on the cold plate surface, the system requires constant contact between ice and the cold plate. A disadvantages to ice cooled systems is that sometimes a "Bridge" can form on the cold plate. A "Bridge" is defined as an area where the ice melts away from the plate and ice forms. This condition creates uneven cooling and warm spots in the cold plate. New ice will fall on top of the "Bridge" and cannot reach the cold plate. The result will be warm, foaming drinks and a loss of carbonation. Most beverage dispensers are equipped with ice bin agitator assemblies to break down the bridges to assure ice and cold plate contact.

Refrigeration <u>Cooling Options – Ice Cooled</u>

Post-Mix System Components **Refrigeration** <u>Cooling Options – Ice Cooled</u>

Some dispenser manufacturers offer a bin adapter kit that allows ice maker manufacturer's to mount their units on top of the dispenser. The ice made by the ice machine, drops into the storage area of the dispenser and is then dispensed when the lever or button for ice is pushed. However, the level of ice in the dispenser bin must be controlled to avoid any damage. If the ice level is too high, the movement of the ice by the agitator could raise up the ice machine off the unit or damage the agitator assembly. To prevent this, an electronic or mechanical "bin stat" should be installed to control the ice level. Cornelius equipment should be filled 4"- 6" below the top of the hopper.

Adapter Plate

Refrigeration

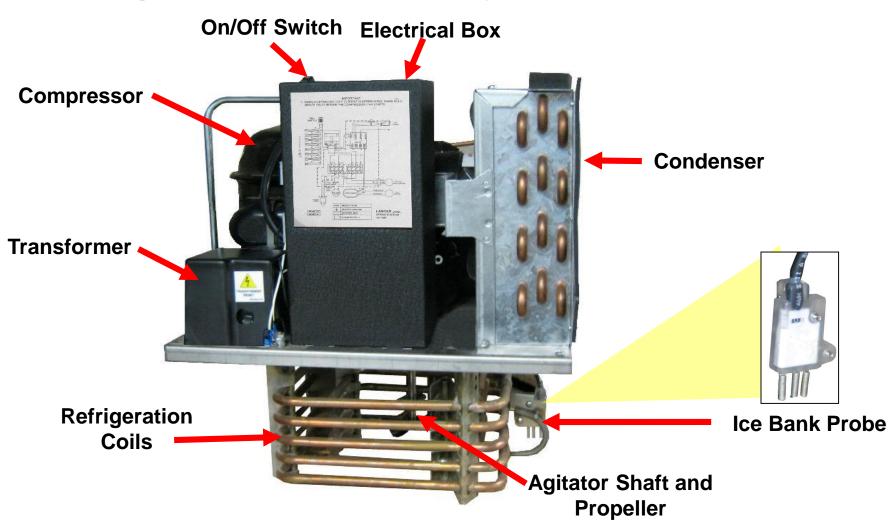
Cooling Options – Mechanically Cooled

The most popular mechanically cooled drink dispensers contain a water-bath system. With this system, a water filled tank (bath) is located in the dispenser cabinet and is refrigerated by a compressor deck cooling system.

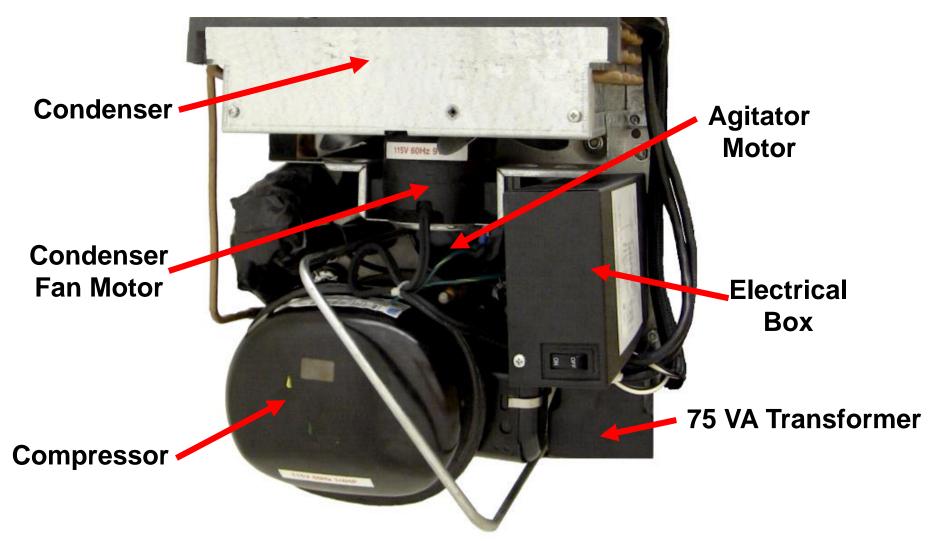

Refrigeration

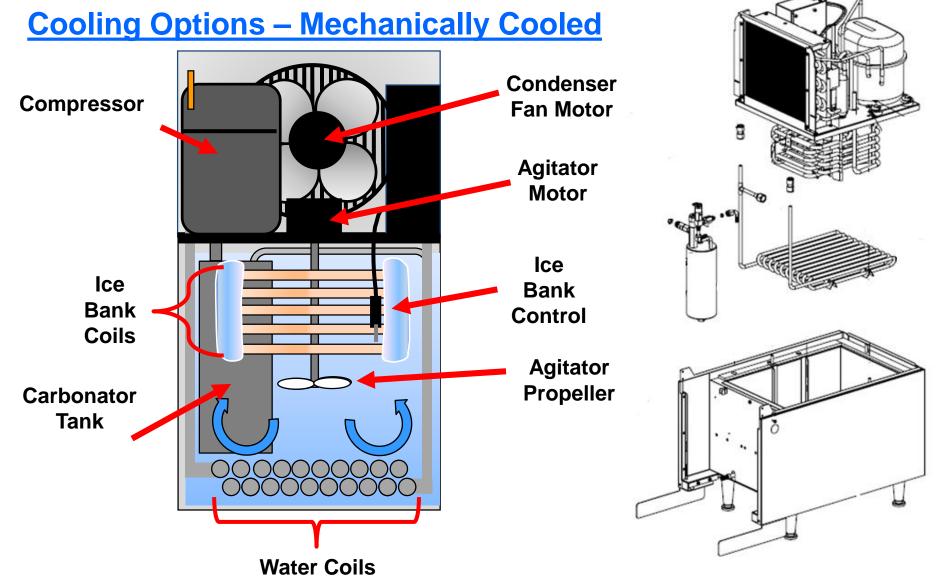
Cooling Options – Mechanically Cooled

The compressor deck has a set of evaporator coils that are submerged in the water and freeze to form an ice bank. The ice bank is controlled by an electronic probe that cycles the compressor on and off to maintain the ice bank size. All the syrup and water lines are totally immersed in the 28° to 32° water. An agitator motor and propeller circulates the water in the bath to ensure that the product lines are cooled consistently.

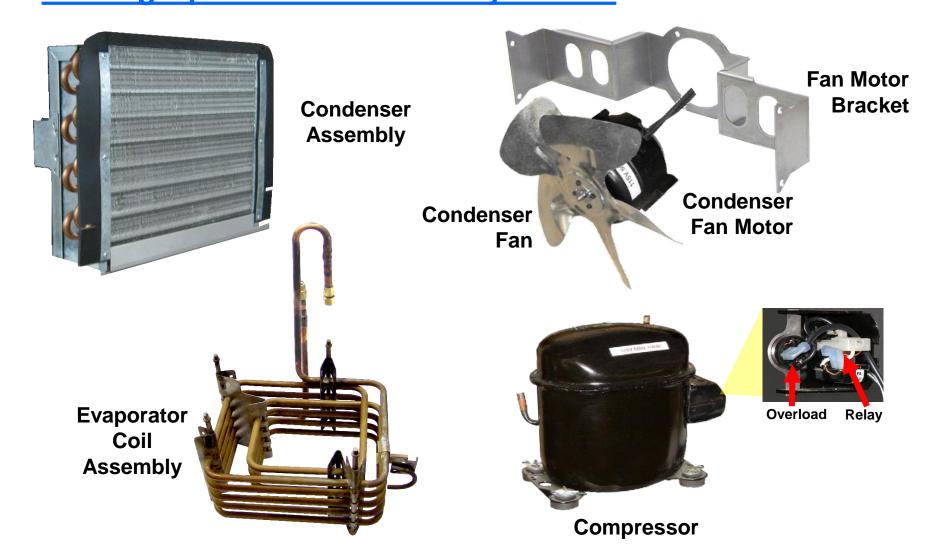


Compressor Deck

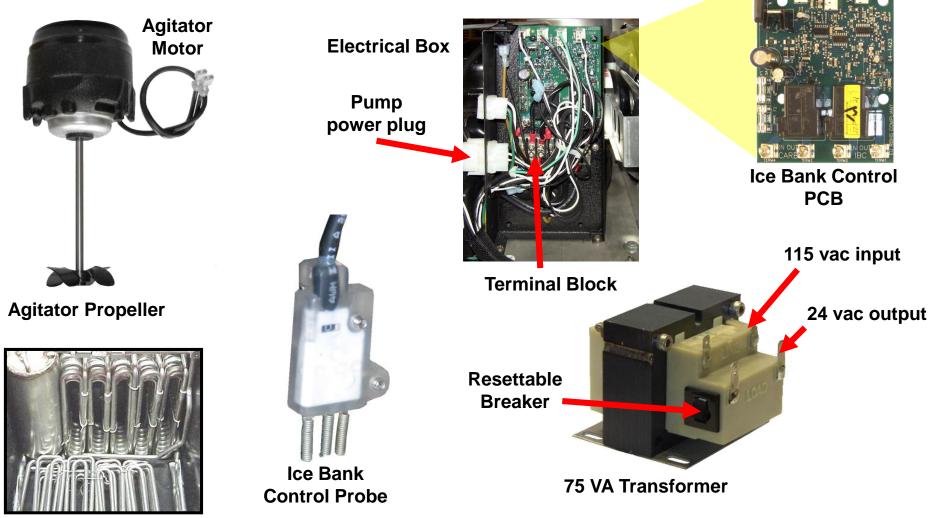



Ice Bank

Cooling Options – Mechanically Cooled

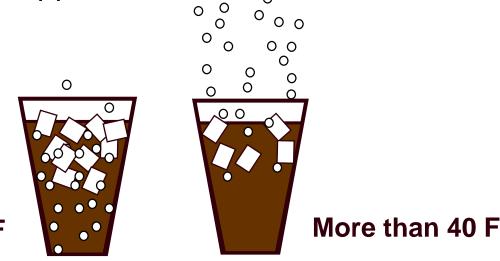


Cooling Options – Mechanically Cooled



Post-Mix System Components Refrigeration Cooling Options – Mechanically Cooled

Cooling Options – Mechanically Cooled



Water & Syrup Circuits

Refrigeration

Adding Ice to Maintain Drink Quality

 Adding ice to a post mix drink maintains the carbonation, preserves the drink taste and keeps the beverage cold during the consumption period. It also helps to preserve the level of visual appeal.

Less than 40 F

The main elements of a post-mix system are:

- Water Supply
- CO2 Supply
- Syrup Supply
- Carbonation
- Refrigeration
- Dispensing Valve

Dispensing Valve

The main function of the post-mix dispensing value is to mix the syrup and water (carbonated or plain) at a set ratio.

Valves may include optional activation features such as pushbutton, lever activation or portion control.

Areas of Focus:

- Valve Components & Functions
- Setting Drink Water to Syrup Ratio
- Check the Drink

Post-Mix System Components SFV-1 Dispensing Valve Valve Components

Specially designed Thicker retaining plate for retaining system for improve durability reliability improvement Specific translucent flow control body for quality Brand colorimprovement matching solenoid cover with modified design to improve durability Specific water ceramic set designed to provide consistent performance over a wide range of H₂O pressure (30 to 110 psi). Nozzle & Diffuser **Micro Switch** Stainless steel (Sanitary) lever

SFV-1 Features and Benefits

- Simplified installation and maintenance
 - Front access to flow regulators allow for quick and accurate brixing with superior repeatability
 - Modular snap-fit design for simplified maintenance
 - Easy to change flow rate and activation methods
 - Minimum number of fasteners allows for quick service
 - Self-contained flow control module and simple-toadjust flow controls reduce set-up time
 - Improved warranty coverage for ice bev unts
 - Seamless warranty claims processing

Post-Mix System Components SFV-1 Features and Benefits

Ease of Service (Example: replacing lever)

- 5 steps
- No tools required
- Time: approx. 35 seconds to disassemble and reassemble

SFV-1 Dispensing Valve Improvements

Reliability / Serviceability

- Heavy duty retaining plate (water hammer)
- Longer/Stronger body screws (water hammer)
- Improved Ratio Adjustment screws (Ease of Service)
- Stronger ceramic materials (Durability)
- Drink Quality
 - Translucent flow control body (Durability and Taste due to discontinuance of Mold release agent)

Performance

- Improved Ceramic set design (Versatility / 30 110 psi)
- Improved Solenoid design w/ red cover (Durability & ID)
- Piston improved w/ wear additive to 1.2M+ cycles (Life Cost)

Post-Mix System Components Dispensing Valve

Setting Water to Syrup Ratio

To assure that a post mix drink tastes the way the manufacturer intended, it is necessary to verify that the drink has the correct syrup to water ratio. This is accomplished by separating the syrup and water that is dispensed from the valve into a compartmentalized cup. The volume of the compartments will correspond to desired syrup to water ratio. For example, if a 5 part water to 1 part syrup ratio is desired, the water compartment in the cup will be five times larger that the syrup side.

We must also assure that the dispensing valve is set to the proper flow rate. Verifying the flow rate should be completed prior to setting the ratio.

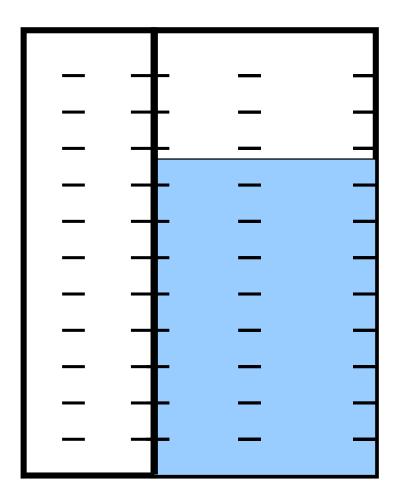
Ratio Cup

Dispensing Valve

Setting Water Flow Rate

To check the water flow rate:

- Install syrup separator (push up, then twist clockwise)
- 2. Draw sample for designated time interval and check volume



Dispensing Valve

Setting Water to Syrup Ratio

To achieve desired water flow rate:

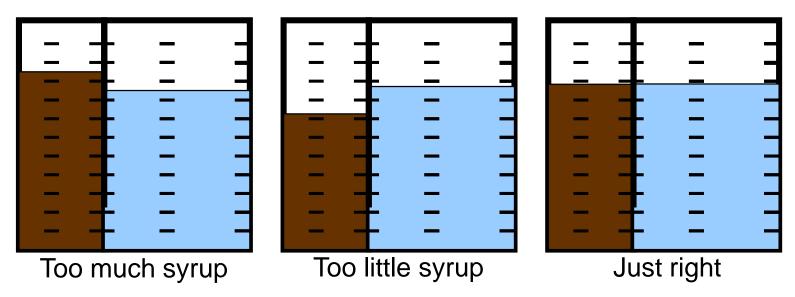
- Turn adjustment screw
 clockwise to raise water level
- Turn adjustment screw counterclockwise to lower water level

Dispensing Valve

Setting Water to Syrup Ratio

To check the ratio:

1. Dispense sample into correct compartment as shown



Dispensing Valve

Setting Water to Syrup Ratio

To achieve desired ratio, both syrup and water levels must be equal

- To raise level turn syrup adjustment screw clockwise
- To lower level turn syrup adjustment screw counter-clockwise

Dispensing Valve

Setting Water to Syrup Ratio

Some drink manufactures recommend different ratios for different products and conditions.

	Sugar	Sugar Free
No Ice	5.00:1	5.50:1
Hard Ice	4.75:1	5.25:1
Soft Ice	4.50:1	5.00:1

Dispensing Valve

Check the drink

Make sure the drink looks and tastes refreshing, then enjoy!

This concludes the seminar of

UNDERSTANDING POST-FIX SYSTEMS

Technical Support

Cornelius 1-800-238-3600

Be prepared to supply unit model and serial number